Discover how research groups are leveraging the power of SIRIUS to elevate their metabolomics data analysis across various fields, including drug discovery, diagnostics, food industry, environmental toxicology, and materials science. Explore exciting discoveries and find out how our tools can empower you to uncover the next groundbreaking molecule. For an extensive list of discoveries, click here.

SIRIUS is setting new standards in molecular identification, enabling the elucidation of previously uncharted compounds, and making a valuable contribution to both science and industry. Our commitment is to continue improving SIRIUS and shaping the future of metabolomics research by initiating new research projects to further this mission.

Ketamine’s potential for treating neurological diseases such as depression, PTSD, and chronic pain has sparked significant interest within the medical and scientific communities. (Photo by Robina Weermeijer on Unsplash.)
Discoveries

Ketamine distribution in the brain: understanding drug metabolism with SIRIUS

Ketamine is known for its dual role as an anesthetic and an emerging antidepressant. Despite its long-standing clinical use, the metabolic pathways and pharmacokinetics of ketamine remain poorly understood. A study of ketamine metabolism in the pig brain using SIRIUS provides valuable insights into the distribution of ketamine and its metabolites in different areas of the brain.

Read More »
Microbial breakdown, facilitated by microorganisms like bacteria and fungi, plays a pivotal role in decomposing organic matter. (Image by Thomas Breher on Pixabay)
Discoveries

SIRIUS on the body farm: Investigating microbial decomposers

Microbial decomposers break down human remains, recycling nutrients and influencing ecosystem dynamics. Is there a universal microbial decomposer network that assembles in response to mammalian remains? How does the network and the cadaver-derived nutrient pool change during the decomposition process and can this microbial community change be used for predicting time since death for forensic purposes?

Read More »
Current wastewater treatment plants often struggle to effectively remove antibiotics and their transformation products.
Discoveries

Biotransformation of antibiotics in wastewater: A fungal solution investigated with SIRIUS

Antibiotics are crucial for fighting bacterial infections, but the rise of antibiotic resistance poses a serious threat to public health. Beyond healthcare, the presence of antibiotic residues in wastewater exacerbates the problem. Conventional treatment methods often fall short in adequately removing these compounds, perpetuating resistance. Biological processes, such as biotransformation by fungi, have emerged as promising alternatives. Researchers investigated the potential of fungi to transform antibiotics, using SIRIUS and CSI:FingerID to identify degradation products.

Read More »
A forest bathed in sunlight. Lignin is essential for stability of wood.
Discoveries

Adding value to by-products: Unraveling the complex structure of lignin with SIRIUS

Despite being one of Earth’s most abundant polymeric organic compounds, lignin is often considered a lower-value byproduct in industrial processes. Converting lignin into valuable chemicals or biomaterials requires a thorough structural characterisation of depolymerised products. This non-targeted analysis method involving 2D liquid chromatography and high-resolution tandem mass spectrometry uses SIRIUS in versatile ways to unravel the complex structures of depolymerized lignin.

Read More »
Discoveries

Potential risk of impurities in pesticides: Elucidating structurally related impurities using ZODIAC

Thiacloprid is a first-generation, widely used, neonicotinoid insecticide. Its persistence in the environment and potential adverse effects on human health have raised significant concerns. Elucidating the impurity profile of pesticides is crucial for assessing their environmental impact and potential risks, and setting acceptable limits for impurities. Using enhanced molecular formula identification with ZODIAC, researchers demonstrate an approach for identifying structurally related impurities in pesticides.

Read More »
Newborn baby feet
Discoveries

Long-term storage in biobanks: Identifying unstable metabolites with CSI:FingerID and CANOPUS

Neonatal dried blood spots are not only important for newborn screening but also a powerful source for investigating the potential metabolic etiologies of various diseases using untargeted LC-MS-based metabolomics. So far it is unclear whether the metabolites in those samples remain stable in storage. CSI:FingerID and CANOPUS help to investigate the stability of metabolites and classes of molecules.

Read More »