Discover how research groups are leveraging the power of SIRIUS to elevate their metabolomics data analysis across various fields, including drug discovery, diagnostics, food industry, environmental toxicology, and materials science. Explore exciting discoveries and find out how our tools can empower you to uncover the next groundbreaking molecule. For an extensive list of discoveries, click here.

SIRIUS is setting new standards in molecular identification, enabling the elucidation of previously uncharted compounds, and making a valuable contribution to both science and industry. Our commitment is to continue improving SIRIUS and shaping the future of metabolomics research by initiating new research projects to further this mission.

Discoveries

a-MAIZE-ing: Sustainable Pest Control Investigated with SIRIUS

Agriculture has always been a dance with nature, requiring farmers to constantly adapt to changing conditions. One particularly promising method that has emerged over recent decades is push-pull technology, a strategy that uses nature’s own defenses to protect crops and boost yields. Using SIRIUS, researchers uncovered metabolites in push-pull maize that enhance its natural defense against pests.

Read More »
Assorted liquor bottles in a bar. Plastic-related contaminants in liquor products were even found in glass packaging.
Discoveries

Screening extractables and leachables with SIRIUS: Plastic-related contaminants in liquor products

In a world where we’re becoming increasingly conscious of what we consume, understanding the potential presence of unexpected extractables and leachables in our food and drinks is paramount. Alcoholic beverages are of particular concern due to their increased affinity and extended storage periods. A non-targeted approach to analysis is essential for uncovering both known and unknown contaminants in our drinks. By analysing fragmentation patterns, SIRIUS predicts chemical structures of unknowns to identify unexpected contaminants and ensure safety of our food.

Read More »
Discoveries

Thawing permafrost: Another step towards assessing the consequences

Thawing permafrost, caused by climate change, releases stored carbon into the atmosphere, accelerating global warming. The enzyme latch hypothesis suggests that low-oxygen conditions in wetlands slow down enzymatic polyphenol degradation and carbon release. But are oxygen-dependent phenol oxidases really the only enzymes that microbial communities have in their arsenal? Or should we perhaps take a closer (metatranscriptomic and metabolomic) look at the microbially catalysed carbon cycle?

Read More »
Ketamine’s potential for treating neurological diseases such as depression, PTSD, and chronic pain has sparked significant interest within the medical and scientific communities. (Photo by Robina Weermeijer on Unsplash.)
Discoveries

Ketamine distribution in the brain: understanding drug metabolism with SIRIUS

Ketamine is known for its dual role as an anesthetic and an emerging antidepressant. Despite its long-standing clinical use, the metabolic pathways and pharmacokinetics of ketamine remain poorly understood. A study of ketamine metabolism in the pig brain using SIRIUS provides valuable insights into the distribution of ketamine and its metabolites in different areas of the brain.

Read More »
Discoveries

Quality control using SIRIUS: nutrient profiles of Spirulina and co

Microalgae, such as Spirulina, are promising sources of sustainable nutrition with rich nutrient profiles. Ensuring consistent quality of microalgae as dietary supplements requires a quality control method reporting about their chemical composition. Mass spectrometry-based metabolomics coupled with SIRIUS helps identifying primary and secondary metabolites with potential health benefits, including free fatty acids, polar lipids, and pigments.

Read More »
Microbial breakdown, facilitated by microorganisms like bacteria and fungi, plays a pivotal role in decomposing organic matter. (Image by Thomas Breher on Pixabay)
Discoveries

SIRIUS on the body farm: Investigating microbial decomposers

Microbial decomposers break down human remains, recycling nutrients and influencing ecosystem dynamics. Is there a universal microbial decomposer network that assembles in response to mammalian remains? How does the network and the cadaver-derived nutrient pool change during the decomposition process and can this microbial community change be used for predicting time since death for forensic purposes?

Read More »
Current wastewater treatment plants often struggle to effectively remove antibiotics and their transformation products.
Discoveries

Biotransformation of antibiotics in wastewater: A fungal solution investigated with SIRIUS

Antibiotics are crucial for fighting bacterial infections, but the rise of antibiotic resistance poses a serious threat to public health. Beyond healthcare, the presence of antibiotic residues in wastewater exacerbates the problem. Conventional treatment methods often fall short in adequately removing these compounds, perpetuating resistance. Biological processes, such as biotransformation by fungi, have emerged as promising alternatives. Researchers investigated the potential of fungi to transform antibiotics, using SIRIUS and CSI:FingerID to identify degradation products.

Read More »
A forest bathed in sunlight. Lignin is essential for stability of wood.
Discoveries

Adding value to by-products: Unraveling the complex structure of lignin with SIRIUS

Despite being one of Earth’s most abundant polymeric organic compounds, lignin is often considered a lower-value byproduct in industrial processes. Converting lignin into valuable chemicals or biomaterials requires a thorough structural characterisation of depolymerised products. This non-targeted analysis method involving 2D liquid chromatography and high-resolution tandem mass spectrometry uses SIRIUS in versatile ways to unravel the complex structures of depolymerized lignin.

Read More »
Discoveries

Life at the bottom of the sea: Chemical classes of exometabolites investigated with CANOPUS

Examining seawater presents an enduring challenge due to the complexity of molecules present in trace amounts and their dynamic nature. The lowest ecological region of the sea is inhabited by holobionts, such as sponges, which significantly shape the marine chemical landscape through the release of diverse exometabolites. In addressing the need to capture these molecules immediately after release, a novel underwater device was developed, allowing in situ collection and enrichment without harming organisms. To test the device, researchers investigated exometabolites of sponges in the Mediterranean sea using untargeted mass spectrometry and CANOPUS to understand the chemical class distribution. This approach holds promise for studying endangered species in marine protected areas, assessing seasonal variations in exometabolite production, and monitoring toxins or human impacts in the marine environment.

Read More »