Discoveries

See the impact of SIRIUS firsthand! This archive showcases exciting discoveries and major breakthroughs made by research groups worldwide. Explore how the power of SIRIUS is elevating small molecule data analysis across diverse fields, including drug discovery, human health, diagnostics, food industry, monitoring, microbiomics, environmental toxicology, and materials science. For an extensive list of publications by independent research groups using the SIRIUS software framework, click here.

Discoveries

SIRIUS in the Jena Experiment: It’s a Battle for Resources, Not a Break from Pests

In a biodiverse ecosystem, it’s often assumed that plants have safety in numbers—that a mix of species will confuse pests and dilute disease pressure, allowing individual plants to save energy on defences and focus on growth. But is this ecological truism always the case? A recent study from the long-running Jena Experiment uses untargeted metabolomics and SIRIUS for feature annotation and compound class prediction. They found that for many plants in a diverse community it is less about relaxing their defences and more about adapting to intense competition for light and nutrients.

Read More »
Discoveries

SIRIUS in Space: The ISS metabolome

As we prepare for longer human missions beyond Earth, understanding the invisible ecosystems of space habitats has become critical for astronaut health. The International Space Station (ISS) is not just a home and laboratory—it is also a closed microbial and chemical environment unlike anything on Earth. This study mapped the ISS microbiome and metabolome in unprecedented detail, uncovering its vast chemical “dark matter” using SIRIUS.

Read More »
Microbial breakdown, facilitated by microorganisms like bacteria and fungi, plays a pivotal role in decomposing organic matter. (Image by Thomas Breher on Pixabay)
Discoveries

SIRIUS on the body farm: Investigating microbial decomposers

Microbial decomposers break down human remains, recycling nutrients and influencing ecosystem dynamics. Is there a universal microbial decomposer network that assembles in response to mammalian remains? How does the network and the cadaver-derived nutrient pool change during the decomposition process and can this microbial community change be used for predicting time since death for forensic purposes?

Read More »
Discoveries

Potential risk of impurities in pesticides: Elucidating structurally related impurities using ZODIAC

Thiacloprid is a first-generation, widely used, neonicotinoid insecticide. Its persistence in the environment and potential adverse effects on human health have raised significant concerns. Elucidating the impurity profile of pesticides is crucial for assessing their environmental impact and potential risks, and setting acceptable limits for impurities. Using enhanced molecular formula identification with ZODIAC, researchers demonstrate an approach for identifying structurally related impurities in pesticides.

Read More »
Radula complanata
Discoveries

A liverwort under stress: compound classification with CANOPUS to detect metabolic shifts

Liverworts are chemically diverse plants with unique cell organelles responsible for the synthesis and storage of specialized metabolites. Untargeted metabolomics was used to analyze the metabolic stress response of liverworts without isolating individual metabolites. CANOPUS classified the affected compounds, and helped to map the biochemical pathways of the unique stress response of liverworts compared to vascular plants.

Read More »